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Abstract 

This report presents multigrid methods for solving the 3-D incompressible viscous rotating 

flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. NUaaerical for- 

mulations are given in both the rotating reference frame and the absolute frame. Comp 

made for the ackuracy, efficiency, and robustness between the steady-state scheme and the time-ac- 

curate scheme for simulating viscous rotating flows for complex internal and external flow applica- 

tions. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computa- 

tions are discussed. 
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I. Introduction 

Computation of unsteady rotating flows can be applied in many practical areas such as in turbo- 

machinery cascade flow, helicopter rotor flow, andmarine propulsor flow predictions[ 1][2][3]. Two 

numerical approaches are typically used in the simulation of unsteady flows in rotating machinery. 

A common way is to solve the governing equations in arotating reference frame by computing either 

the relative velocity [4] or the absolute velocity [2][5]. The advantage of this approach is that it uses 

a steady-state formulation, if the flow field can be viewed as a steady state in the rotating frame. 

Thus, many efficient acceleration techniques, such as local time stepping and multigrid method, can 

be used. An alternative to the steady-state approach is to establish the governing equations in a fixed 

absolute frame, and solve the equations using a time-accurate formulation. However, the demand 

on accuracy and efficiency for time-accurate solutions is much higher than that for steady-state 

solutions. For the reason of accuracy, time step is restricted, and it has to be chosen smaller than 

the smallest characteristic scale length to be resolved. The restriction on the time step reduces the 

efficiency of implicit schemes, but it is the most straightforward way to deal with the general un- 

steady flows that can not be viewed as a steady state in the rotating reference frame, such as the un- 

steady rotor/stator interaction. 

c 

This report describes and compares both numerical formulations of solving the governing equa- 

tions in the rotating reference frame with a steady-state method and in the absolute frame with an 

unsteady time-accurate method. In the rotating frame, a steady relative velocity flow field is pur- 

sued. In order to fully use the original code which is written in the absolute velocity components, 

a dependent variable transformation is first performed to change the relative velocity components 

into the absolute velocity components in the governing equations, and the computation is performed 

based on absolute velocity instead of relative velocity in the rotating frame [2][5]. Two practical 

applications are presented for solving viscous rotating flows in aNASA low-speed centrifugal com- 

pressor and in a marine propeller 4119. The purpose here is to evaluate and validate the accuracy, 
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efficiency and robustness of the current method to predict complex flow fields for both internal and 

external flow applications. 

In the following, the 3-D incompressible Navier-Stokes equations in general curvilinear coordi- 

nates are first given, followed by the numerical methods used to solve the equations in both the rotat- 

ing reference frame and absolute frame. The difference between the two approaches is addressed. 

Then the multigrid implementation [6][7] is illustrated to accelerate the solutions in both the rotating 

and absolute frames. Computational results of viscous rotating flows in both impeller and propeller 

cases are presented. In the last section, some conclusions are given. 
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II. Governing Equations 

The artificial compressibility form of the 3-D incompressible Navier-Stokes equations in a gen- 

eral curvilinear coordinate system (& q, 5, z), which rotates about the x-axis at a constant speed of 

Q, can be written as follows 
. 

where Q ,  the flux vectors E G, Hand the source term S are 

Q = J  
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Here J, p ,  u, v, and w denote the Jacobian transformation, pressure, and the Cartesian velocity com- 

ponents in the absolute frame, respectively. b is the artificial compressibility coefficient, and terms 

Fk2 Fk; FkZ, where k=(, q, and c, are the viscous flux components in curvilinear coordinates. The 

Baldwin-Lomax algebraic turbulence model is adopted in this work. The relative contravariant ve- 

locity componGnts V, V, and W are defined as 

where u', v', and w' are the relative velocity components in the rotating reference frame, and are writ- 

ten in terms of absolute velocity components u, v, and w as 

VI = v - 52.2 w 1  = w + 52y ut = u 

To solve the governing equations in an absolute frame, one can simply set the rotating speed 

52 to zero in the above equations and evaluate &, qt, and Ct as a result of grid rotation, which reduces 

to the normal conservative form of 3-D incompressible NavierStokes equations in general curvili- 

near coordinates based on the fixed absolute frame. Grid speeds have been included in the above 

formulation to allow grid motion relative to both the rotating and the absolute frame. In this work, 

however, only steady state solutions with stationary grids are pursued in the rotating frame. These 

steady state solutions of the absolute velocity on stationary grids in the rotating frame are carried 

out by setting 52 to the rotational speed and & = qt = Ct = 0 in Eq. (1). These absolute velocity solu- 

tions, which are viewed as steady state in the rotating frame, correspond to aparticular time and posi- 

tion of the rotating grid in the absolute frame. The unsteady computations with dynamic grids are 

performed in the absolute frame. 

/ -  
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III. Numerical Solution Method 

In both the steady-state and unsteady formulations, the governing equations (1) are discretized 

by a cell centered finite-volume scheme. The time derivative is differenced using the Euler back- 

ward formula. For the onedimensional case in both the rotating and the absolute frames (in the 

absolute frame, with the source term S equal to zero), it may be written as 
. 

where the index i corresponds to a cell center and indices i f 1/2 correspond to cell faces. The spatial 

discretization of the Euler fluxes at cell faces are approximated by using the third-order MUSCL 

approach in the Roe scheme. Details about this method can be found in 181. 

The nonlinear system of equations (2) is solved by the discretized Newton-relaxation (DNR) 

method described in [9]. Note that Eq. (2) can be written in a simple form as 

Applying Newton's method to Eq. (3) yields 

where m= 1,2,3, ... is the number of Newton iterations implemented at each time step, with Qn+l,l 

=en. These sub-iterations at each time level serve to eliminate linearization error, and thereby 

insure temporal accuracy. ZV is the Jacobian matrix of the nonlinear equation (3) where the con- 

tribution of the source term is not included. The resulting formulation of Eq. (2) by Newton's 

method is 
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c 

where f?' is the Jacobian matrix of the numerical flux vector with the first subscript representing 

the position of the cell face of the numerical flux vector, and the second subscript representing the 

position of the dependent variable vector that the numerical flux vector is differentiated with re- 

spect to. la is an identity matrix except the first diagonal element is zero in order to satisfy the true 

incompressible continuity equation. In the rotating frame where the flow field is a steady state, 

continued iteration of Eq. (5) would presumably lead to en+' + Qn. For unsteady computation in 

the absolute frame, time-dependent results can be achieved when a converged solution is obtained 

at each time step through Newton iterations. Gauss-Seidel relaxations are used to solve the linear 

system of equations, which results from Newton's method, approximately at each Newton itera- 

tion. 
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W. Multigrid Method 

In this work, the multigrid method [6][7] is used to accelerate both the steady-state and time-ac- 

curate computations. The difference between the steady and unsteady multigrid methods is that in 

the former, time is advanced in the fine grid as well as the coarse grid to achieve full efficiency. 

While in the later, both the fine grid and coarse grid equations must be solved at the same time level 

to ensure temporal consistency [ 101. The two-level multigrid method for Eq. (3) can be briefly de- 

scribed as follows: 

1. Iterate Nh(QS=Sh N times on the fine grid h by Newton's method. 

2. Restrict the residual and solution to the coarser grid 2h, and iterate N2h<Q2S = S2h N 

times, where S2h= N2h(12$QS + R2$(Sh- NhQS is the source term on the coarse grid 2h. 

3. Interpolate the correction from the coarser grid to the fine grid and update the solution 

Q h e  Qh+ Ph2h(Q2h- 12$QS 

4. Repeat steps 1-3 for A times at the same time level, using Qh as the new approximation 

to en+'. 
In the above procedure, N is the number of Newton iterations for the fine grid and coarser grids, 

and A is the number of multigrid cycles implemented at each time step. Choosing different values 

of N and A-may form different multigrid strategies and result in different effects. In this work, 

the number of Newton iterations N is chosen as one for all computations. The number of multigrid 

cycles A used at each time step varies according to different cases. Note that if no coarser grids 

exist, both parameters A and N have the same meanings in regard to the implementation of the 

code. 
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V. Results 

Two applications involving both internal and external viscous flows are presented here. One is 

a turbulent flow in a NASA low-speed centrifugal compressor (LSCC) [ 11. Another case is a turbu- 

lent flow about . a marine propeller 41 19 [3]. In each case, computations were first performed by a 

steady numerical approach in the rotating frame, then compared with the unsteady time-accurate 

approach in the absolute frame. Computations were carried out on a single processor of an SGI 

75MHz R8000 workstation. 

A NASA Low-Speed Centrifugal Compressor 

The study of the LSCC is sponsored by the NASA Lewis Research Center to evaluate the capa- 

bility of the computational method to predict the flow field in the complex geometric channels of 

centrifugal compressors. The complex phenomena to be considered include secondary flows in the 

impeller passage, tip clearance flows, etc. The experimental investigation of the LSCC was con- 

ducted by Hathaway et al. in [ 11, which gives detail measurements of the velocity components V, 

Vt (Ve in Ref.[ l]), and V, in the blade passage. These experimental data are used to verify the accura- 

cy of computed results. 

Two computational meshes for the LSCC geometry were buikwith about 300K and 200K grid 

points on the fine and coarse grids, respectively. The grid spacing on the fine grid surfaces is 4.x104, 

and has 73 points on the blade, 13 points on the tip clearance, 37 points spanwise, and 4 1 points pitch- 

wise (Figure 1). The Reynolds number is 4 . 3 ~ 1 0 ~ ~  based on the velocity of the inlet flow and the 

diameter of the blade tip. The grid y+ value on surfaces is about 1. The inflow boundary condition 

is given by specifying the three velocity components y v, and w. The back pressure is specified at 

the exit of the computational domain. Figure 2 shows the convergence history of the steady-state 

solution in the rotating frame, based on the fine grid. A 3-level full coarsening multigrid strategy 

was employed to accelerate the convergence. A local time stepping was used with a maximum CFL 

number of 20. At each time step, only one multigrid cycle (A=1), with 5 Gauss-Seidel relaxations 
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was implemented. The residual was reduced by 2 orders of magnitude in 200 multigrid cycles, and 

then became flat. The reason for that may be due to the extremely small volume in this fine grid 

(minimum volume is less than l . ~ l O - ~ ~ ) .  The computer requirement for this solution is 336 MOB 

internal memory, and 27 hours of CPU time for 500 multigrid cycles on the machine mentioned 

above. . 
The following Figures 3(a) through 3(d) show computed and measured relative velocity compo- 

nents at 4 locations (m/m,=0.149, 0.475, 0.644, and 0.941, where dins is the non-dimensional 

shroud meridional distance) along the blade passage. The results in each plot are shown at every 

5% of span, with the results nearest the shroud located at 95% of blade span from the hub, where 

100% span denotes the blade tip. Agreement between the numerical prediction and the measurement 

is considered reasonably good. Figures 4(a) through (d) show computed particle traces on the suc- 

tion and pressure surfaces, and the top and hub surfaces of the LSCC channels, based on the relative 

velocity. The plots indicate a continuing migration of fluid outward toward the tip near the blade 

surface (Figures 4 (a) and (b)). 

The LSCC flow field was also solved based on the coarse mesh, using both the steady approach 

in the rotating frame and the unsteady timeaccurate approach in the absolute frame. For the steady 

computation, the same multigrid strategy and parmeters were employed as in the previous case. 

Figure 5 shows the convergence history in the coarse grid. A convergent solution was obtained in 

500 multigrid cycles by reducing the residual for 4 orders of magnitude. The compai-ison of relative 

velocity components between the computation and experiment is very similar to the fine grid case 

(shown in Figures 3(a)-(d)), and therefore are not presented here. The unsteady calculation was 

started using local time stepping, and moving the entire grid at a rate of 300 time steps per revolution 

of the impeller. A 3-level multigrid procedure was also used to accelerate the convergence of the 

unsteady solution at each time step. After the solution marched for two revolutions, the calculation 

was switched to minimum time stepping, with 3000 time steps per revolution (A t=0.00029). The 

final solution was obtained after about 4000 time iterations, due to the very small time step used in 
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the unsteady computation. The accuracy of the time-dependent solution will be discussed below. 

Another effort made by Taylor [ 111 using the Roe flux formulation (non-MUSCL type [ 121) and 

a single grid approach showed similar results after about 6000 time step iterations of the unsteady 

computation. The cost of CPU time in these unsteady solutions is about 6-10 times that of the steady 

solution in the rotating frame. 

The accuracy of time-dependent solutions is assessed with different time steps and multigrid 

cycles at each time step, by comparing with the results obtained using a steady approach in the rotat- 

ing frame. The unsteady calculation can be performed at a larger time step of 300 cycles per revolu- 

tion (A t=0.0029), but the results differ from those obtained using the steady method, see Figure 6(a). 

Applying more multigrid iterations (A) at each time step seemed not to improve the solution very 

much, as shown in Figure 6(b). The accuracy of the unsteady solution is significantly improved only 

after reducing the time step to 0.00029, which is 3000 time steps per revolution (Figure 6). The 

above numerical results reveal the following characters of the code. First, the current unsteady code 

is robust, since the allowed time step is not bounded by numerics (stability), but by physics (resolu- 

tion). Therefore, a largest possible time step can be selected in the computation to achieve best effi- 

ciency while maintaining desired accuracy. Second, one multigrid cydi  is sufficient to provide a 

convergent solution at each time step in this case, since more iterations do not change the solution 

significantly. Third, the accuracy of time-accurate solutions is critically dependent on the time step 

used in the calculation, which suggests that higher order time accuracy may be preferred in unsteady 

computations, especially in complex internal flows. Though using a very large time step (or local 

time stepping) does not provide sufficient accuracy for the time-dependent solution, it is an efficient 

way to obtain an initial approximation to start with, or to quickly predict the flow field qualitatively. 

This strategy is also adopted in the computation of the next case. 

A Marine Propeller 4119 

There is reported computational result for the marine propeller 4119 [13]. The purpose here is 

to further assess the accuracy and efficiency of the current method for simulating external rotating 
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flows in a complex geometry. The computational grid consists of three blocks with a total of 280K 

points (Fig.7). There are 41 points in the streamwise and spanwise direction on the blade. The Re- 

ynolds number is 5.76x105, based on the freestream velocity and the diameter of the blade. Figure 

8 shows the convergence history of the steady solution obtained in the rotating frame, where the cal- 

culation was performed by using a &level multigrid full coarsening. At each time step, one multi- 

grid iteration (A=l) ,  with 5 GaussSeidel relaxations was implemented. Local time stepping was 

used at a CFX number of 5. It is seen that the residual is reduced by about 3 orders of magnitude 

in 400 multigrid cycles. The CPU time of this calculation is about 20.6 hours on the SGI R8000 

workstation. 

. 

The pressure coefficient distributions on the blade surface are show in Figures 9(a)-(c), where 

Y is the radial distance from the measured point on the blade to the hull axis, and R is the radius of 

blade tip. Favorable agreement was obtained between the computation and experiment, except for 

the pressure side at location r/R=0.3. 

A computation was also performed using the unsteady time-accurate approach in the absolute 

frame. The initial solution was obtained by running the unsteady code in the absolute frame using 

local time stepping, while the computational grid was rotated at a rate of 200 cycles per revolution 

of the propulsor. After 200 time steps, the time-accurate calculation was started using a minimum 

time step of 0.004165, which is equivalent to 200 time steps per revolution. The multigrid cycles 

are employed to insure the convergence of the solution at each time step. It was found that the final 

solution with one multigrid cycle (&=l) at each time step is close to that with two multigrid cycles 

(&=2) at each time step. The unsteady solution became periodic after seven revolutions of the grid 

motion, or 1400 time steps. The cost of the CPU time of this unsteady solution is 3.5 times and 7 

times that of the previous steady solution, with one and two multigrid cycles at each time step, re- 

spectively. Figures lO(a)-(c) show computed u-velocity contours obtained in the rotating frame and 

in the absolute frame with different multigrid cycles. Again, results obtained in the two different 

frames are similar. Figures 1 l(a)-1 l(c) show the computed and measured pressure coefficient dis- 
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tributions on the blade surface, where computed results were obtained in the absolute frame using 

2 multigrid iterations at each time step. Computational results about thrust and torque coefficients 

are given in the Table 1. A desired accuracy is achieved in both computations. 

. 
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VI. Conclusions 

The computational results are presented for both internal and external viscous turbulent flows 

in complex geometries, a NASA low-speed centrifugal compressor and a marine propeller 4119. 

Computations are performed and compared in both the rotating reference frame using a steady-state 

formulation and the absolute frame using a time-accurate approach. A multigrid strategy is applied 

in both the steady-state and time-accurate computations to improve the efficiency and robustness 

of the algorithm. Results show that solving the unsteady rotating flow in arotating frame costs much 

less CPU time than solving the flow in the absolute frame, in both internal and external flow cases. 

Comparison between the computed results and the experimental data is considered satisfactory for 

the current turbulence model and grid resolution. 

c 

Although the current multigrid algorithms are relatively efficient and robust, there are some un- 

resolved issues which require further investigation. These include the use of a larger CFL number 

in the steady flow computations with a source term, and selection of the optimal time step for the 

best output regarding both accuracy and efficiency in time-dependent solutions. Finally, the second 

or higher order time difference scheme should be incorporated into the code to improve the accuracy 

and efficiency for time-accurate computations. 
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Figure 1 3-block grid of the NASA low-speed centrifugal compressor 
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solution of the LSCC in rotating frame at CFL=20 
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Figure 7 3-block grid of marine propeller 41 19 
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Figure 8 Convergence history of 4-level multigrid solution of a 
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Figure 9 Computed (in rotating frame) and measured pressure coefficients 
on the blade surfaces at (a) r/R=0.3, (b) r/R=0.7, (c) r/R=0.9 
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Figure 10 Computed u-velocity contours (a) in rotating frame, 
(b) in absolute frame with 1 multigrid cycle, 
(6) in absolute frame with 2 multigrid cycles 
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Figure 11 Computed (in absolute frame) and measured pressure coefficients 
on the blade surfaces at (a) r/R=0.3, (b) r/R=0.7, (c) r/R=O.9 

27 



1 Thrust Coefficient I Torque Coefficient 

Experimental Data 0.146 0.028 

I 0.1497 I 0.0254 Computation I in Rotating Frame 

Computation 
in Absolute Frame 0.1 498 0.0256 

Table 1. Measured and computed thrust coefficient and torque coefficient 
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